
Neural Networks

Lecture 8
Modeling text using a recurrent neural

network trained with a really fancy
optimizer

The error surface for a linear neuron
• The error surface lies in a space with a horizontal axis for

each weight and one vertical axis for the error.
– It is a quadratic bowl.

• i.e. the height can be expressed as a function of the weights
without using powers higher than 2. Quadratics have constant
curvature (because the second derivative must be a constant)

– Vertical cross-sections are parabolas.
– Horizontal cross-sections are ellipses.

E w1

w2w

Convergence speed
• The direction of steepest

descent does not point at
the minimum unless the
ellipse is a circle.
– The gradient is big in

the direction in which
we only want to travel
a small distance.

– The gradient is small in
the direction in which we
want to travel a large
distance.

This equation is sick. The
RHS needs to be multiplied
by a term of dimension w^2
to make the dimensions
balance.

i
i w

Ew

How the learning goes wrong

• If the learning rate is big,
it sloshes to and fro
across the ravine. If the
rate is too big, this
oscillation diverges.

• How can we move quickly
in directions with small
gradients without getting
divergent oscillations in
directions with big
gradients?

•

E

w

Five ways to speed up learning
• Use an adaptive global learning rate

– Increase the rate slowly if its not diverging
– Decrease the rate quickly if it starts diverging

• Use separate adaptive learning rate on each connection
– Adjust using consistency of gradient on that weight axis

• Use momentum
– Instead of using the gradient to change the position of

the weight “particle”, use it to change the velocity.
• Use a stochastic estimate of the gradient from a few cases

– This works very well on large, redundant datasets.
• Don’t go in the direction of steepest descent.

– The gradient does not point at the minimum.
• Can we preprocess the data or do something to the gradient so

that we move directly towards the minimum?

Newton’s method

• The basic problem is that the gradient is not
the direction we want to go in.
– If the error surface had circular cross-

sections, the gradient would be fine.
– So maybe we should apply a linear

transformation that turns ellipses into circles.
• Instead of turning the error surface into a

circular bowl, we could achieve the same thing
by transforming the gradient vector.
– Transform it in exactly the way it would be

transformed by turning the error surface into
a circular bowl.

How to transform the gradient vector

• We would like to multiply the vector of gradients
by the inverse of the curvature matrix.
– This produces a vector that takes us straight

to the minimum in one step for a quadratic
surface.

• Unfortunately, the inverse curvature matrix has
too many terms to be of use in a big neural
network (the number of weights squared!)

1

 H
w
Ew

i
i

This equation is
dimensionally correct.

Conjugate gradient

• There is an alternative to going to the minimum
in one step by multiplying by the inverse of the
curvature matrix.

• Use a sequence of steps each of which finds the
minimum along one direction.

• Make sure that each new direction is “conjugate”
to the previous directions.
– This means that as you go in the new

direction, you do not change the gradients in
the previous directions.

A picture of conjugate gradient

The gradient in the
direction of the first step is
zero at all points on the
green line.

So if we move along the
green line we don’t mess
up the minimization we
already did in the first
direction.

What does conjugate gradient achieve?

• After N steps, conjugate gradient is guaranteed
to find the minimum of an N-dimensional
quadratic surface.
– After many less than N steps it has typically

got the error to close to the minimum value.

• Conjugate gradient can be applied to a non-
quadratic error surface and it usually works quite
well, but the HF optimizer is much better.

Training recurrent neural nets with a
powerful optimizer

• Here is a good problem to demonstrate the
power of RNNs: understand all the text on the
web.

• The only way to predict the next word really well
is to learn a model of what the source believes.
– Stephen Harper suspended parliament

because he wanted to avoid the danger of ….
• We are still a long way from learning this level of

understanding!
– But machine learning will get there eventually

and programming rules by hand never will.

Advantages of working with characters

• The web is composed of character strings.
• Any learning method powerful enough to

understand the world by reading the web ought
to find it trivial to learn which strings make
words.

• Pre-processing text to get words is a big hassle
– What about prefixes, suffixes etc.
– What about New York?
– What about subtle effects like “sn” words?

The obvious recurrent neural net

1500
hidden
units

character:
1-of-86

1500
hidden
units

c
predicted distribution
for next character.

It is a lot easier to
predict 86 characters
than 100,000 words.

Another view of the recurrent net

• There are exponentially many nodes!
• Different nodes can share structure because they use

distributed representations.
• The next hidden representation needs to depend on the

conjunction of the current character and the current
hidden representation.

fix

fixi

fixin

i e

n

Each node is a
hidden state
vector. The next
character must
transform this to a
new node.

Multiplicative connections

• Instead of using the inputs to the recurrent net to
provide additive extra input to the hidden units,
we could use the current input character to
choose the whole hidden-to-hidden weight
matrix.
– But this requires 86x1500x1500 parameters
– This would make the net overfit.

• Can we achieve the same kind of multiplicative
interaction using fewer parameters?
– Is there some way to allow the 86 character-

specific weight matrices to share parameters?

1500
hidden
units

character:
1-of-86

Using a few thousand 3-way factors to allow a
character to create a whole transition matrix

predicted distribution
for next character.
.

1500
hidden
units

fu fv
f

Each factor, f,
defines a rank one
matrix , T

ff vu

Each character, c, determines a gain for each of these
rank one matrices

cfw

cfw

c

Training the character model

• Ilya Sutskever used about a million strings of 250
characters taken from wikipedia. For each string he
starts predicting at the 51st character.

• It takes 5 days on 8 GPU boards each with 240
processors to get a really good model. It needs
very big mini-batches (its lucky he didn’t start in 1980)

• Ilya’s best model beats the state of the art for
character prediction, but works in a very different
way from the best other models.
– It can balance quotes and brackets over long

distances. The rival models cannot do this.

In 1974 Northern Denver had been
overshadowed by CNL, and several Irish
intelligence agencies in the Mediterranean
region. However, on the Victoria, Kings
Hebrew stated that Charles decided to
escape during an alliance. The mansion
house was completed in 1882, the second in
its bridge are omitted, while closing is the
proton reticulum composed below it aims,
such that it is the blurring of appearing on
any well-paid type of box printer.

Some text generated by the model

